Atoms and Ions In a Neutral Atom of an Element: The # of _____(-) = The # of ____(+) This represents an ____ of the element ___ (__P's & ___ e-'s) ### We have now taken one electron away from Lithium! It still has _ Protons, but now only _ electrons! (Neutrons haven't changed) This is no longer called "A Lithium Atom". It is now called a Lithium ____. Because Protons are Positive (+) and Electrons are Negative (-), this Lithium Ion has 3+'s and 2 -'s. Because Protons are Positive (+) and Electrons are Negative (-), this Lithium Ion has 3+'s and 2 -'s. It has a "Net Charge" of __. (+3 and -2 = ___) Proton Neutron An Ion is an atom in which # of _____ ≠ # of _____ (Neutrons don't matter here) An Ion can also be defined as an atom with a (Protons or Electrons are "left over") A Lithium ____ is shown as having a net +1 charge. The symbol for a Lithium Ion is ____ (Take out your Periodic Table!) A Neutral Sodium (Na) Atom has ____ Protons(+) and ___ Electrons(-) # (Take out your Periodic Table!) A Neutral Sodium (Na) Atom has Protons(+) and ___ Electrons(-) ### A Neutral Sodium atom has a net charge of ____ # OKAY. Let's REMOVE an electron from the Sodium Atom! # It still has ___ Protons(+), but now it only has ___ Electrons(-) (There is ONE P(+) left over!) It still has ___ Protons(+), but now it only has ___ Electrons(-) (There is ONE P(+) left over!) The NET CHARGE is ___ It still has ___ Protons(+), but now it only has ___ Electrons(-)(*There is ONE P(+) left over!*) The NET CHARGE is ___ A Sodium Ion has the symbol ____ (Take out your Periodic Table!) A Neutral Magnesium (Mg) Atom has Protons(+) and _____ Electrons(-) (Take out your Periodic Table!) A Neutral Magnesium (Mg) Atom has Protons(+) and ___ Electrons(-) ### Magnesium tends to easily lose 2 electrons! #### It now has Protons(+) and ___ Electrons(-) The NET CHARGE on this Magnesium ion is now _____ And the symbol for a Magnesium ion is: So an Mg²⁺ ion has Protons(+) and ____Electrons(-) # So an Mg^{2+} ion has ___ Electrons(-) The ATOMIC NUMBER on the Periodic Table If the NET CHARGE is 2+, it means it has 2 LESS Electrons than Protons! (Protons don't change, only Electrons!) An Al³⁺ ion has ____Protons(+) and ____Electrons(-) # So an Al³⁺ ion has ___ Protons(+) and ___ Electrons(-) The ATOMIC NUMBER on the Periodic Table If the NET CHARGE is 3+, it means it has 3 LESS Electrons than Protons! (Protons don't change, only Electrons!) Electrons can be ADDED to Neutral Atoms to make IONS. If an Ion has MORE Electrons(-) than Protons(+), the NET CHARGE on that ion is positive/negative (Take out your Periodic Table!) A Neutral Fluorine (F) Atom has _____ Protons(+) and ____ Electrons(-) # A Neutral Fluorine (F) Atom hasProtons(+) and _____ Electrons(-) ## So a Neutral Fluorine Atom (9P's and 9e-'s) has a NET CHARGE of If we add ONE Electron to a Neutral Fluorine Atom, it will now have ____P's(+) and ____e-'s(-) and the NET CHARGE on the ion will be ___. The symbol for a Fluoride Ion is The ion O²⁻ has ____Protons and ____Electrons. The ion O²- has Protons and Electrons. This is the ATOMIC NUMBER of Oxygen A NET CHARGE of 2- means it has 2 MORE Electrons(-) than Protons(+) The ion As³⁻ has ____Protons and ____Electrons. # The top left on the Periodic Table shows the ____ NUMBER or # of _____. ## In a Neutral Atom (Atom) of an Element, the # of e⁻'s = # of P's 19 + **K**Potassium 39.1 So a (neutral) potassium atom has ____ protons and ___ electrons ## The NET CHARGE on a potassium ION is + (means +1) This means that there is ONE LESS electron than protons 39.1 So a potassium ION has ___ protons and ____ electrons ## The NET CHARGE on a Scandium ION is 3+ (means +3) 21 3+ Sc Scandium 45.0 This means that there are <u>THREE</u> <u>LESS</u> electrons than protons So a Scandium ION has protons and ___ electrons 26 3+ Fe ²⁺ Iron 55.8 One with a net charge of 3+ 26 3+ Fe 2+ Iron 55.8 One with a net charge of 3+ This ion Fe³⁺ would have Protons and ___ Electrons 26 3+ Fe 2+ Iron 55.8 The other ion would have a net charge of 2+(Iron(II)) 26 3+ Fe Iron 55.8 The other ion would have a net charge of 2+(Iron(II)) This ion Fe²⁺ would have Protons and ___ Electrons 17 – **CI**Chlorine 35.5 Negative Ions (Ions of NON-METALS) change the ending of their names to IDE, So Cl⁻ is called a CHLORIDE ion. ## The NET CHARGE on a Chloride ION is - (means -1) 17 – CI Chlorine 35.5 This means that there is ONE MORE electron than protons So a chloride ION (Cl-) has ____ protons and ____ electrons ## The NET CHARGE on a Sulphide ION is 2- (means -2) 16 2-**S** Sulphur 32.1 This means that there is <u>TWO MORE</u> electrons than protons So a Sulphide ION (S2-) has ___ protons and ___ electrons 16 2-**S** Sulphur 32.1 A Sulphur atom has ___ Protons and ___ Electrons. 16 2– **S**Sulphur 32.1 Remember, this means the NET CHARGE on an ION, not on an ATOM ## Use your Periodic Table to find the # of Protons and # of Electrons in each of the following: | | Symbol | # of
Protons | # of
Electrons | |-----------------|--------|-----------------|-------------------| | A Barium ion | | | | | A Phosphide ion | | | | | A Nitrogen atom | | | | | A Nitrogen ion | | | | | A Gallium atom | | | | | A Gallium ion | | | | Remember that given Nuclear Notation, we can find the number of Protons and Neutrons: #### To find P's and N's from Nuclear Notation To find # of Neutrons, put Atomic Number Here: Subtract to get # of Neutrons Mass # = P + N ⁴¹Ca Calcium's atomic Number = ____ So it has ___ Protons So it has ___ Neutrons # We can also find the Number of Electrons! #### If we are given this: ⁴¹Ca There is NO number on the top right, so this must be a ATOM and the NET CHARGE = _ #### If we are given this: 41Ca There is NO number on the top right, so this must be a NEUTRAL ATOM and the NET CHARGE = 0 In a neutral atom #of _'s = # of _'s #### If we are given this: 41Ca There is NO number on the top right, so this must be a NEUTRAL ATOM and the NET CHARGE = 0 In a neutral atom # of P's = # of e^{-1} s So this atom has: protons and ___ electrons #### To Summarize: ⁴¹Ca ``` Has: ___ Protons (Atomic Number) __ Neutrons (41-20 = 21) and __ Electrons (e⁻'s = P's) ``` Has ___ Protons ___ Neutrons Electrons 37**Br**- Has ___ Protons ___ Neutrons Electrons Has ___ Protons ___ Neutrons Electrons 33**P**3- Has ___ Protons ___ Neutrons Electrons #### The isotope: 76AS³has ___ protons __ neutrons electrons #### The isotope: 201Au⁺ has ___ protons ___ neutrons electrons ## An isotope has 46 protons, 58 neutrons and 42 electrons. Write the nuclear notation: ## An isotope has 52 protons, 79 neutrons and 54 electrons. Write the nuclear notation: