Tutorial 12 - Solutions

<u>Determining the Concentration of a Specific Ion Using</u> <u>Precipitation Titrations.</u>

Answer to **Question 1** on page 12 of Tutorial 12.

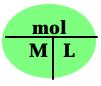
- In order to find the concentration of chloride ion in a sample of pool water, a 50.0 mL sample of the pool water was titrated with 0.500 M AgNO₃ solution, using sodium chromate solution (Na₂CrO_{4 (aq)}) as an indicator. At the equivalence point, it was found that 53.4 mL of AgNO₃ solution had been added.
 - a) Calculate the moles of Ag⁺ used.

$$moles = M x Litres$$

 $= 0.500 M \times 0.0534 L$

 $= 0.0267 \text{ moles of } Ag^+$

b) Write the balanced net-ionic equation for the titration.


$$Ag^+_{(aq)} \ + \ Cl^-_{(aq)} \ \Rightarrow \quad AgCl_{(s)}$$

c) Determine the moles of Ct ions in the sample.

From the ratio of coefficients in the balanced net-ionic equation:

moles of
$$Cl^- = \text{moles of } Ag^+ \times \underline{1 \text{ mol } Cl^-} \\ \underline{1 \text{ mol } Ag^+}$$

= <u>0.0267 moles of Cl</u>

d) Calculate the [Ct] in the sample of pool water.

$$M = \underline{\text{moles}} = \underline{0.0267 \text{ moles}} = \underline{0.534 \text{ M}}$$

$$L = \underline{0.05 \text{ L}}$$

Since the lowest number of significant digits in the question is 3, the answer would have three significant digits.

so [Cl⁻] =
$$0.534 \text{ M}$$

Answer to **Question 2** on page 13 of Tutorial 12.

2. A solution containing silver ions (Ag⁺) is titrated with 0.200 M KSCN solution to find the [Ag⁺] in the sample. The indicator Fe(NO₃)_{3 (aq)} is used to signal when the equivalence point is reached. It is found that 15.6 mL of 0.200 M KSCN is needed to titrate a 25.0 mL sample of Ag⁺ solution. Determine the [Ag⁺] in the sample. Show all steps in a clear concise manner. (Use question 1 as a guide.)

moles of SCN⁻ used:

 $moles = M \times L$

 $= 0.200 M \times 0.0156 L$

= 0.00312 moles of SCN⁻

Balanced Net-Ionic Equation:

$$Ag^{+}_{(aq)} + SCN^{-}_{(aq)} \rightarrow AgSCN_{(s)}$$

moles of Ag⁺ in sample:

Since the ratio of coefficients is 1:1,

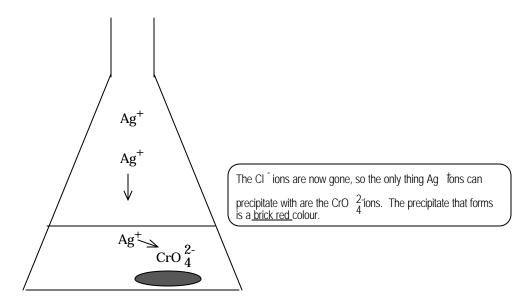
moles of
$$Ag^+$$
 = moles of $SCN^ \times$ $\frac{1 \text{ mol } Ag^+}{1 \text{ mol } SCN^-}$
= 0.00312 moles of Ag^+

Molar concentration of Ag⁺ ([Ag⁺])

$$M = \frac{\text{moles}}{L} = \frac{0.00312 \text{ moles}}{0.025 \text{ L}} = \frac{0.1248 \text{ M}}{0.025 \text{ L}}$$

The answer would be rounded to 3 significant digits, as this was the lowest number of significant digits in the data.

$$[Ag^+] = 0.125 M$$


Answer to **Question 3** on page 13 of Tutorial 12.

3. Explain how the indicator Na₂CrO₄ works in titrations for chloride (Ct) ion concentration using Ag⁺ as a standard solution.

The Ag⁺ ions will keep bonding with the Cl ions forming the white precipitate AgCl *as long as there are Cl ions present.*

As soon as all the Cl ions are used up, the Ag⁺ will then start precipitating with the CrO₄²⁻ ions, forming the precipitate Ag₂CrO₄. But recall from the last page that the colour of Ag₂CrO₄ is *brick red*. Thus, as you can see,

as soon as all the Cl^- ions are used up, the next drop of Ag^+ solution will turn the solution red.

So, as soon as all the Cl is consumed, and a small amount of Ag_2CrO_4 forms, a faint brick red colour will be noticed. At this point, we would STOP the titration.

Tutorial 12 - Solutions Page 3

Answer to **Question 4** on Page 13 of Tutorial 12.

4. Explain how the indicator Fe(NO₃)₃ works in titrations for silver (Ag⁺) ion concentration using SCN⁻ as a standard solution.

The main reaction for the titration is a precipitation of Ag⁺ and SCN⁻ ions to form a precipitate of AgSCN (s):

$$Ag^{+}_{(aq)} + SCN^{-}_{(aq)} \rightarrow AgSCN_{(s)}$$
colourless colourless white precipitate

Once just enough SCN⁻ solution has been added to react with all the Ag⁺ ions, (the *equivalence point*), any excess SCN⁻ ions added will react with the indicator, Fe³⁺ ions and form a complex ion (a larger ion made up of smaller ones) called FeSCN²⁺. This ion, called the ferrothiocyanate ion, is NOT a precipitate, BUT is IS a very intense red colour. You may recall seeing it when you did Experiment 19-A on equilibrium. The reaction is:

$$Fe^{3+}_{(aq)} + SCN^{-}_{(aq)} \rightarrow FeSCN^{2+}_{(aq)}$$

pale rust colourless dark red

A slight permanent red would appear at the *endpoint* of the titration. This would indicate that the *equivalence point* (the point where there is just enough SCN⁻ to react with all the Ag⁺ in the sample) has been reached.

This is the end of Tutorial 12 - Solutions

Tutorial 12 - Solutions Page 4